Applied Mathematics Seminar

Department of Mathematics, Phillips Hall, 801 22nd Street NW, Washington, DC 20052.

Contact Maria Gualdani or Xiaofeng Ren if you need more information about the seminar.


Fall  2018

Future Talks

Title: Primal-Dual Weak Galerkin Finite Element Methods for PDEs
Speaker: Chunmei Wang 
Affiliation: Texas Tech University
Date and Time:Monday, January 14, 11:00am-12:00pm
Place: Rome 771

Abstract. Weak Galerkin (WG) finite element method is a numerical technique for PDEs where the differential operators in the variational form are reconstructed/approximated by using a framework that mimics the theory of distributions for piecewise polynomials. The usual regularity of the approximating functions is compensated by carefully-designed stabilizers. The fundamental difference between WG methods and other existing finite element methods is the use of weak derivatives and weak continuities in the design of numerical schemes based on conventional weak forms for the underlying PDE problems. Due to its great structural flexibility, WG methods are well suited to a wide class of PDEs by providing the needed stability and accuracy in approximations. The speaker will present a recent development of WG, called "Primal-Dual Weak Galerkin (PD-WG)", for problems for which the usual numerical methods are difficult to apply. The essential idea of PD-WG is to interpret the numerical solutions as a constrained minimization of some functionals with constraints that mimic the weak formulation of the PDEs by using weak derivatives. The resulting Euler-Lagrange equation offers a symmetric scheme involving both the primal variable and the dual variable (Lagrange multiplier). PD-WG method is applicable to several challenging problems for which existing methods may have difficulty in applying; these problems include the second order elliptic equations in nondivergence form, Fokker-Planck equation, and elliptic Cauchy problems. An abstract framework for PD-WG will be presented and discussed for its potential in other scientific applications.


Title: The synchronization problem for Kuramoto oscillators and beyond
Speaker: Javier Morales
Affiliation: University of Maryland
Date and Time: Friday, December 7, 11:10am-12:10pm
Place: Phillips 736

Abstract. Collective phenomena such as aggregation, flocking, and synchronization are ubiquitous in natural biological, chemical, and mechanical systems--e.g., the flashing of fireflies, chorusing of crickets, synchronous firing of cardiac pacemakers, and metabolic synchrony in yeast cell suspensions. The Kuramoto model introduced by  Yoshiki Kuramoto is one of the first theoretical tools developed to understand such phenomena and has recently gained extensive attention in the physical and mathematical community. Moreover, it has become the starting point of several generalizations that have applications ranging from opinion dynamics to the development of a human-made interacting multi-agent system of UAVs and data clustering. In this talk, we will review the state of the art for the synchronization problem of the Kuramoto model at the kinetic and particle level. Additionally, we will introduce new developments and variational techniques for the dynamics of this model and some of its variants and its generalization.


Title: Ginzburg-Landau Model of Superconductivity with Prescribed Topological Degrees
Speaker: Oleksandr Misiats
Affiliation: Virginia commonwealth university
Date and Time: Friday, November 30, 11:10am-12:10pm
Place: Phillips 736

Abstract. Superconductivity is a complete loss of resistivity that occurs in most metals below a certain, extremely low critical temperature. The key feature of this physical phenomenon is the vortices, or the points where the external magnetic field penetrates the bulk of a superconductor, thus destroying superconductivity. We model the superconducting vortices using the Ginzburg-Landau functional with a specific (degree) boundary condition that creates the same "quantized" vortices as the external magnetic field. In my talk, I will discuss the issue of well-posedness of such modelling, which reduces to the question of the existence of minimizers for a Ginzburg-Landau functional in certain functional classes. I will also describe the vortex structure of the Ginzburg-Landau minimizers, which may be useful in predicting the locations of the vortices depending on the geometry of a superconductor.

 


Past Talks

"none"

 

Archive