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A lattice path is a sequence of east and north steps, each of unit length,
that describes a walk in the plane between points with integer coordinates.
While such walks are geometric objects, there is a subtler geometry that
we can associate with certain sets of lattice paths. Considering such sets
of lattice paths will lead us to examine set systems and transversals, their
matrix representations, and geometric configurations in which we put points
freely in the faces of a simplex (e.g., a triangle or a tetrahedron). Matroid
theory treats these and other abstract geometric configurations. We will use
concrete examples from lattice paths to explore some basic ideas in matroid
theory and some of the many intriguing problems in this field.


